5,812 research outputs found

    Vibrating Superconducting Island in a Josephson Junction

    Full text link
    We consider a combined nanomechanical-supercondcuting device that allows the Cooper pair tunneling to interfere with the mechanical motion of the middle superconducting island. Coupling of mechanical oscillations of a superconducting island between two superconducting leads to the electronic tunneling generate a supercurrent which is modulated by the oscillatory motion of the island. This coupling produces alternating finite and vanishing supercurrent as function of the superconducting phases. Current peaks are sensitive to the superconducting phase shifts relative to each other. The proposed device may be used to study the nanoelectromechanical coupling in case of superconducting electronics.Comment: 4 pages, 3 figures, to appear in Phys. Rev. Let

    Vibrational coherence in electron spin resonance in nanoscale oscillators

    Full text link
    We study a scheme for electrical detection, using electron spin resonance, of coherent vibrations in a molecular single electron level trapped near a conduction channel. Both equilibrium spin-currents and non-equilibrium spin- and charge currents are investigated. Inelastic side-band anti-resonances corresponding to the vibrational modes appear in the electron spin resonance spectrum.Comment: 4 pages, 3 figures: Published versio

    Continuous quantum phase transition in a Kondo lattice model

    Full text link
    We study the magnetic quantum phase transition in an anisotropic Kondo lattice model. The dynamical competition between the RKKY and Kondo interactions is treated using an extended dynamic mean field theory (EDMFT) appropriate for both the antiferromagnetic and paramagnetic phases. A quantum Monte Carlo approach is used, which is able to reach very low temperatures, of the order of 1% of the bare Kondo scale. We find that the finite-temperature magnetic transition, which occurs for sufficiently large RKKY interactions, is first order. The extrapolated zero-temperature magnetic transition, on the other hand, is continuous and locally critical.Comment: 4 pages, 4 figures; updated, to appear in PR

    Phase diagram of doped BaFe2_2As2_2 superconductor under broken C4C_4 symmetry

    Full text link
    We develop a minimal multiorbital tight-binding model with realistic hopping parameters. The model breaks the symmetry of the tetragonal point group by lowering it from C4C_4 to D2dD_{2d}, which accurately describes the Fermi surface evolution of the electron-doped BaFe2−x_{2-x}Cox_xAs2_2 and hole-doped Ba1−y_{1-y}Ky_yFe2_2As2_2 compounds. An investigation of the phase diagram with a mean-field tt-UU-VV Bogoliubov-de Gennes Hamiltonian results in agreement with the experimentally observed electron- and hole-doped phase diagram with only one set of tt, UU and VV parameters. Additionally, the self-consistently calculated superconducting order parameter exhibits s±s^\pm-wave pairing symmetry with a small d-wave pairing admixture in the entire doping range, % The superconducting s±+ds^\pm + d-wave order parameter which is the subtle result of the weakly broken symmetry and competing interactions in the multiorbital mean-field Hamiltonian

    Imaging the formation of high-energy dispersion anomalies in the actinide UCoGa5_5

    Full text link
    We use angle-resolved photoemission spectroscopy (ARPES) to image the emergence of substaintial dispersion anomalies in the electronic renormalization of the actinide compound UCoGa5_5 which was presumed to belong to a conventional Fermi liquid family. Kinks or abrupt breaks in the slope of the quasiparticle dispersion are detected both at low (∼\sim130 meV) and high (∼\sim1 eV) binding energies below the Fermi energy, ruling out any significant contribution of phonons. We perform numerical calculations to demonstrate that the anomalies are adequately described by coupling between itinerant fermions and spin fluctuations arising from the particle-hole continuum of the spin-orbit split 5f5f states of uranium. These anomalies are resemble the `waterfall' phenomenon of the high-temperature copper-oxide superconductors, suggesting that spin fluctuations are a generic route toward multiform electronic phases in correlated materials as different as high-temperature superconductors and actinides.Comment: 10 pages including supplementary material, Accepted for publication in PR

    Theory of ultrafast quasiparticle dynamics in high-temperature superconductors: Pump fluence dependence

    Full text link
    We present a theory for the time-resolved optical spectroscopy of high-temperature superconductors at high excitation densities with strongly anisotropic electron-phonon coupling. A signature of the strong coupling between the out-of-plane, out-of-phase O buckling mode (B1gB_{1g}) and electronic states near the antinode is observed as a higher-energy peak in the time-resolved optical conductivity and Raman spectra, while no evidence of the strong coupling between the in-plane Cu-O breathing mode and nodal electronic states is observed. More interestingly, it is observed that under appropriate conditions of pump fluence, this signature exhibits a re-entrant behavior with time delay, following the fate of the superconducting condensate.Comment: 5 pages, 3 embedded eps figures, to appear in PR
    • …
    corecore